Weber number

A splash after half a brick hits the water; the image is about half a meter across. Note the freely moving airborne water droplets, a phenomenon typical of high Reynolds number flows; the intricate non-spherical shapes of the droplets show that the Weber number is high. Also note the entrained bubbles in the body of the water, and an expanding ring of disturbance propagating away from the impact site.

The Weber number (We) is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surfaces.[1] It is named after Moritz Weber (1871–1951).[2] It can be thought of as a measure of the relative importance of the fluid's inertia compared to its surface tension. The quantity is useful in analyzing thin film flows and the formation of droplets and bubbles.

  1. ^ Arnold Frohn; Norbert Roth (27 March 2000). Dynamics of Droplets. Springer Science & Business Media. pp. 15–. ISBN 978-3-540-65887-0.
  2. ^ Philip Day; Andreas Manz; Yonghao Zhang (28 July 2012). Microdroplet Technology: Principles and Emerging Applications in Biology and Chemistry. Springer Science & Business Media. pp. 9–. ISBN 978-1-4614-3265-4.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search